A New Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes Classifier for Coping with Gene Ontology-based Features
نویسندگان
چکیده
The Tree Augmented Naı̈ve Bayes classifier is a type of probabilistic graphical model that can represent some feature dependencies. In this work, we propose a Hierarchical Redundancy Eliminated Tree Augmented Naı̈ve Bayes (HRE–TAN) algorithm, which considers removing the hierarchical redundancy during the classifier learning process, when coping with data containing hierarchically structured features. The experiments showed that HRE–TAN obtains significantly better predictive performance than the conventional Tree Augmented Naı̈ve Bayes classifier, and enhanced the robustness against imbalanced class distributions, in aging-related gene datasets with Gene Ontology terms used as features.
منابع مشابه
A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملExtended Tree Augmented Naive Classifier
This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds’ algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning...
متن کاملAveraged Extended Tree Augmented Naive Classifier
This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computatio...
متن کاملLearning extended tree augmented naive structures
This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds’ algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning...
متن کاملLearning the naive Bayes classifier with optimization models
Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.01690 شماره
صفحات -
تاریخ انتشار 2016